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Lévy, Ornstein–Uhlenbeck, and Subordination:
Spectral vs. Jump Description

Iddo Eliazar1 and Joseph Klafter2

Received May 4, 2004; accepted November 15, 2004

Unlike Brownian motion, which propagates diffusively and whose sample-path
trajectories are continuous, non-Brownian Lévy motions propagate via jumps
(flights) and their sample-path trajectories are purely discontinuous. When ana-
lyzing systems involving non-Brownian Lévy motions, the common practice is
to use either spectral or fractional-calculus methods. In this manuscript we sug-
gest an alternative analytical approach: using the Poisson-superposition jump
structure of non-Brownian Lévy motions. We demonstrate this approach in
two exemplary topics: (i) systems governed by Lévy-driven Ornstein–Uhlenbeck
dynamics; and, (ii) systems subject to temporal Lévy subordination. We show
that this approach yields answers and insights that are not attainable using
spectral methods alone.

KEY WORDS: Non-Brownian Lévy motions; selfsimilar Lévy motions; Pois-
son superposition; Lévy-driven Ornstein–Uhlenbeck dynamics; temporal Lévy
subordination.

1. INTRODUCTION

Lévy motions – performed by stochastic processes with stationary and
independent increments – constitute one of the most important and
fundamental family of random motions. Special examples of the Lévy
family include the Brownian, Poisson, and Compound Poisson motions.
Since their introduction in the 1930s,(1–3) Lévy motions were studied and
researched extensively by both theoreticians and applied scientists. The lit-
erature on Lévy motions is vast, and their range of applications encom-
passes numerous fields of science and engineering. See refs. 4–12 for the
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theory of Lévy processes, and the references provided below for their
applications.

For long years Brownian motion served as the dominant model-of-
choice for random noise in continuous-time systems. This choice was
based on solid grounds. Indeed, Brownian motion has many markedly
appealing statistical features such as: (i) finite moments of all orders;
(ii) continuous sample-path trajectories; and, (iii) selfsimilarity – Brown-
ian motion is a ‘fractal’ stochastic process which is statistically invariant
to changes of scale.(13) Moreover, powerful analytical methodologies to
‘handle’ Brownian motion are available, including: (i) the Fokker–Planck
equation; (ii) the Feynman–Kac equation; and, (iii) the celebrated Ito
calculus(19–22) (see also refs. 23–26).

Its remarkable statistical properties, on the one hand, and its remark-
able amenability to mathematical analysis, on the other, have led Brown-
ian motion to become the model of continuous-time random motion and
noise. However, Brownian motion is just a single example of the Lévy
family. Furthermore, it is a very special and miss-representing member of
this family. We elaborate;

A main feature distinguishing Brownian motion from all other Lévy
motions is the continuity of its sample-path trajectories. Amongst the Lévy
family, the Brownian ‘member’ is the only motion with continuous sam-
ple-paths. All other motions have purely discontinuous sample-path trajec-
tories – i.e., they are pure-jump processes. Hence, Brownian motion is the
only case where the Lévy motion’s propagation is conducted continuously
via diffusion. In all non-Brownian cases the Lévy motion’s propagation is
conducted discontinuously and discretely via jumps.

Another major distinction between Brownian motion and non-Brown-
ian Lévy motions is intimately related to the issue of selfsimilarity. As
described above, a key property of Brownian motion is its scale-invariance,
or selfsimilarity. However, this property is not unique to Brownian motion.
The Lévy family includes an entire subset of selfsimilar motions, of which
Brownian motion is only a singe example. What is unique about Brown-
ian motion is that it is the only selfsimilar Lévy motion possessing finite
variance – all other selfsimilar Lévy motions have infinite variance.

In recent years Lévy motions have drawn much attention and
research.(27–39) On the one hand, numerous examples and evidence of non-
Brownian noises have been discovered and documented in many ‘real-world’
complex systems. In fact, statistics of the Lévy type turned out to be
a ubiquitous phenomena empirically observed in various areas including:
physics (anomalous diffusion, turbulent flows, non-linear Hamiltonian
dynamics(30,35)), biology (heartbeats,(40) firing of neural networks(41))
seismology (recordings of seismic activity(42)), electrical engineering (signal
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processing(43–45)), and economics (financial time series(46–48)). On the other
hand, the ruling paradigm of Brownian-modeling of noise in continuous-
time stochastic systems began to give way to the examination and incorpo-
ration of models driven by non-Brownian Lévy motions and noises.

When analyzing Lévy motions, the common approach is to use spec-
tral methods: transform to Fourier or Laplace space and thus ‘trans-
late’ probabilistic problems to analytic problems. An alternative approach
(and, in various perspectives – an equivalent approach) is to use fractional
calculus generalizations of the diffusion and Fokker–Planck equations
for non-Brownian processes characterized by super-diffusive behavior.(38)

These approaches have various analytical advantages. However, transform-
ing to Fourier/Laplace space often leaves us with implicit, rather than
explicit, answers to the probabilistic problems we started from. Fractional
calculus methods, on the other hand, are applicable only to selfsimilar
Lévy motions.

Surprisingly, the main underlying structure of non-Brownian Lévy
motions – namely, their Poisson-superposition jump structure – is less
commonly used. Examples exploiting this underlying structure include: in
ref. 50 where Lévy-driven Langevin systems are studied and ‘reverse engi-
neered’; in ref. 51 where the extreme jumps of one-sided Lévy motions
are explored; and, in ref. 52 where the first passage problem for one-sided
Lévy motions is investigated.

The aim of this manuscript is to point out the ‘jump-perspective’ of
non-Brownian Lévy motions, and to demonstrate the use of their under-
lying Poisson-superposition jump structure. We believe that keeping a dual
analytic-oriented and jump-oriented perspectives when analyzing a system
involving non-Brownian Lévy motions is indispensable and necessary in
order to provide a comprehensive understanding of the system.

In order to demonstrate the use of the Poisson-superposition jump
structure of non-Brownian Lévy motions we chose two exemplary topics:
Lévy-driven Ornstein–Uhlenbeck dynamics,(49,50) and temporal Lévy sub-
ordination.(54,55) The Ornstein–Uhlenbeck dynamics model systems which,
simultaneously, are: (i) subject to a restoring field generating a quadratic
potential; and, (ii) perturbed by a continuous-time random noise. Tempo-
ral Subordination is the ‘pacing mechanism’ driving systems which tick
according to internal subjective clocks, rather than according to the ‘uni-
versal’ objective clock. Subordination enables the generation of anomalous
sub-diffusive and super-diffusive motions from regular diffusive motions
such as Random Walks. We proceed as follows:

In Section 2 we review the notions of Lévy motions and Poisson
superpositions. Section 3 is devoted to Lévy-driven Ornstein–Uhlenbeck
dynamics, and Section 4 is devoted to Lévy subordination. The exposition
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is entirely self-contained, and examples are incorporated throughout the
manuscript.

A note about notations: throughout the manuscript P(·) = Probability
and E [·] = Expectation.

2. LÉVY MOTIONS

Lévy motions are stochastic processes with independent and sta-
tionary increments, which are continuous in probability. One-sided Lévy
motions – also referred to as Lévy subordinators – are Lévy motions with
non-negative increments (rendering their sample-path trajectories mono-
tone non-decreasing). In this section we review these stochastic processes.
For a comprehensive treatment of Lévy motions we refer the readers to
refs. 7–10.

2.1. Spectral Representation

Lévy motions and one-sided Lévy motions are characterized by their
spectral representations in Fourier/Laplace space. The Fourier representa-
tion of a Lévy motion L= (L(t))t�0 admits the form

E[exp{iωL(t)}]= exp{−�L(ω) · t} (1)

(ω real), and the Laplace representation of a one-sided Lévy motion S=
(S(t))t�0 admits the form

E[exp{−ωS(t)}]= exp{−�S(ω) · t} (2)

(ω�0). The functions �L(ω) and �S(ω) – the log-Fourier and log-Laplace
transforms of L(1) and S(1) – fully characterize the underlying Lévy
motion/One-sided Lévy motion, and are hence referred to as the spectral
characteristics of L and S. There is a one-to-one correspondence between
the laws of Lévy motions and one-sided Lévy motions and infinitely divis-
ible probability laws.(53)

Formulae (1)–(2) give the Fourier and Laplace transforms of the ran-
dom variables L(t) and S(t) (t �0). That is, Eqs. (1)–(2) are the transforms
of the one-dimensional marginal distributions of the Lévy motion L and
the one-sided Lévy motion S. The special Lévy structure (namely; the sta-
tionarity and independence of the increments, and the continuity in prob-
ability) enables to extend Eqs. (1)–(2) to the infinite-dimensional Fourier
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and Laplace transform of the entire processes L and S:

E
[

exp
{
i

∫ ∞
0

ϕ(t)L(dt)

}]
= exp

{
−
∫ ∞

0
�L(ϕ(t))dt

}
, (3)

and

E
[

exp
{
−
∫ ∞

0
ϕ(t)S(dt)

}]
= exp

{
−
∫ ∞

0
�S(ϕ(t))dt

}
, (4)

where ϕ(t) is a ‘nice’ test function3 (non-negative in the one-sided
case). The test function ϕ in Eqs. (3)–(4) is the infinite-dimensional
Fourier/Laplace coordinate – the infinite-dimensional counterpart of the
one-dimensional Fourier/Laplace coordinate ω in Eqs. (1)–(2).

2.2. Poisson Superpositions

A Poisson process, with jumps of size x0 occurring at rate λ0, is a
Lévy motion and its spectral characteristic is

(1− exp{iωx0})λ0.

A superposition of N independent Poisson processes – labeled n =
1,2, . . . ,N , and where the nth Poisson process has jumps of size xn occur-
ring at rate λn – is also a Lévy motion and its spectral characteristic is
given by

N∑
n=1

(1− exp{iωxn})λn. (5)

Passing from Eq. (5) to a continuum limit – where jumps of size x

occur at rate λ(x)dx – we arrive at the limiting Fourier spectral charac-
teristic

∫ ∞
−∞

(1− exp{iωx})λ(x)dx (6)

(ω real). If the jumps take only positive values then the counterpart of
Eq. (6) is the limiting Laplace spectral characteristic

3That is, such that for which the integral on right hand side of (3)–(4) is well defined and
convergent.
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∫ ∞
0

(1− exp{−ωx})λ(x)dx (7)

(ω�0). (The well-posedness of Eqs. (6)–(7) pending on the convergence of
the respective integrals.)

We shall say that a real/positive-valued random variable is a Poisson
superposition if its log-Fourier/Laplace transform is of the form of Eqs.
(6)/(7), and we shall say that a Lévy motion/One-sided Lévy motion is a
Poisson superposition if its spectral characteristic is of the form of Eqs.
(6)/(7).

The rigorous formalism of Eqs. (6)–(7) is provided by the celebrated
Lévy–Khinchin theorem. This theorem asserts that every Lévy motion can
be decomposed into two independent stochastic parts: (i) a continuous part,
which is a Brownian motion (recall that the sample-path trajectories of
Brownian motion are continuous); and, (ii) a pure-jump part, which is a
Poisson superposition (with a somewhat more general Fourier characteris-
tic form than the one given in Eq. (6)).

The rate function λ(x) appearing in Eqs. (6)–(7) will henceforth be
referred to as the superposition’s Lévy–Khinchin density. The Lévy-Khin-
chin density might have infinite total mass:

∫∞
−∞ λ(x)dx �∞. This is not

due to divergence at |x|→∞ but, rather, due to a possible divergence at
|x|→ 0. Intuitively speaking, large jumps can occur only rarely, but tiny
jumps may occur very frequently. The Lévy–Khinchin density has finite
total mass – i.e.,

∫∞
−∞ λ(x)dx <∞ – if and only if the resulting motion is

a Compound Poisson process.

2.3. Symmetric and One-sided Poisson Superpositions

In this paper we shall focus on two special classes of Poisson super-
positions – symmetric and one-sided.

In the symmetric case the Lévy–Khinchin density λ(x) is symmetric
and the resulting Poisson superposition is a symmetric Lévy motion L

with spectral (Fourier) characteristic

�L(ω)=2
∫ ∞

0
(1− cos{ωx})λ(x)dx. (8)

Equation (8) follows straightforwardly from Eq. (6). Due to the symme-
try it is enough to specify �L(ω) for ω � 0. The Lévy–Khinchin formula
asserts that the admissible jump densities are such that satisfy the integra-
bility condition
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∫ ∞
0

min{x2,1}λ(x)dx <∞ (9)

(otherwise the integral in Eq. (8) would fail to converge).
In the one-sided case the Lévy–Khinchin density λ(x) vanishes on

(−∞,0) and the resulting Poisson superposition is a one-sided Lévy
motion S with spectral (Laplace) characteristic

�S(ω)=
∫ ∞

0
(1− exp{−ωx})λ(x)dx (10)

(ω�0). The Lévy–Khinchin formula asserts that the admissible jump den-
sities are such that satisfy the integrability condition

∫ ∞
0

min{x,1}λ(x)dx <∞ (11)

(otherwise the integral in Eq. (10) would fail to converge).
It is both natural and useful to introduce the ‘cumulative distribution

function’ of the Lévy–Khinchin density λ(x). However – since the integral
of λ(x) might diverge at the origin – we need to define the ‘cumulative
distribution function’ by integrating from x to infinity, rather than from
zero to x. This leads us to the definition of the Lévy–Khinchin tail func-
tion �(x), x >0, given by:

�(x)=
∫ ∞

x

λ(u)du (12)

The meaning of the Lévy–Khinchin tail is straightforward: �(x) is the rate
at which jumps of size greater than x occur. Formula (12) defines only the
right Lévy–Khinchin tail. However, this is sufficient for our purposes since:
(i) in the symmetric case the right and left Lévy–Khinchin tails are iden-
tical; and (ii) in the one-sided case the left Lévy–Khinchin tail vanishes.

The connection between the spectral characteristics �L(ω) and �S(ω)

and the Lévy–Khinchin tail �(x) is given, respectively, by

�L(ω)

ω
=2

∫ ∞
0

sin{ωx}�(x)dx (13)

in the symmetric case, and by

�S(ω)

ω
=
∫ ∞

0
exp{−ωx}�(x)dx (14)
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in the one-sided case. The derivation of Eqs. (13) and (14) follows, respec-
tively, from Eqs. (8) and (10) using integration by parts together with the
definition of the Lévy–Khinchin tail �(x) (Eq. (12)).

2.4. Examples

To illustrate, we give below a collection of examples of symmetric and
one-sided Lévy motions which are Poisson superpositions. We begin with
the one-sided examples;

2.4.1. One-sided Poisson superpositions (x >0)

1. Compound Poisson process with Gamma-distributed jumps
(a,p >0):

λ(x) = ap

�(p)
exp{−ax}xp−1,

�S(ω) = 1−
(

a

a+ω

)p

.

In the special case where p = 1 the jumps are Exponentially distributed
and �S(ω)=ω/(a+ω).

2. The Gamma process – one-sided Lévy motion with Gamma-
distributed increments (a >0):

λ(x) = exp{−ax}
x

,

�S(ω) = ln
(

1+ ω

a

)
.

In this case the Lévy–Khinchin density has infinite total mass, but never-
theless the motion’s increments have finite moments of all orders.

3. Selfsimilar motions (0<α <1):

λ(x)= α

�(1−α)

1
x1+α

,

�S(ω)=ωα.

These processes are the only one-sided Lévy motions which are invariant
under changes of scale – i.e., they are statistically selfsimilar,(13) or ‘frac-
tal’. In this case the Lévy–Khinchin density has infinite total mass, and
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the increments have no finite moments (even the mean diverges!). We shall
henceforth refer to a one-sided Lévy motion with spectral characteristic
�S(ω)=aωα as α-selfsimilar with amplitude a.

4. Selfsimilar one-sided Lévy motions can be modified by the incor-
poration of an exponential cutoff, yielding (a >0, 0<α <1):

λ(x) = α

�(1−α)

exp{−ax}
x1+α

,

�S(ω) = (a+ω)α−aα.

This cutoff retains the infinite total mass of the Lévy–Khinchin density,
but renders the increments with finite moments of all orders.

5. The last example is a linear combination of examples #1 and #4
above, yielding (a >0, 0<α <1):

λ(x)= 1
�(α)

exp{−ax}
x1−α

(
a+ 1−α

x

)
,

�S(ω)= ω

(a+ω)α
.

Again; the Lévy–Khinchin density has infinite total mass, but the incre-
ments have finite moments of all orders.

2.4.2. Symmetric Poisson superpositions (x �=0)

1. Compound Poisson process with Laplace-distributed jumps (a >0):

λ(x)= a

2
exp{−a|x|},

�L(ω)= ω2

a2+ω2
.

This is the two-sided counterpart of the Compound Poisson process with
exponentially distributed jumps.

2. The two-sided Gamma process (a >0):

λ(x)= exp{−a|x|}
|x| ,

�L(ω)= ln

(
1+ ω2

a2

)
.

This is the two-sided counterpart of the (one-sided) Gamma process.
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3. Selfsimilar motions (0<β <2):

λ(x)= β

2Iβ

1
|x|1+β

, (15)

�L(ω)=|ω|β,

where Iβ =
∫∞

0 sin{u}u−βdu. These processes are the only symmetric pure-
jump Lévy motions which are invariant under changes of scale – i.e., they
are statistically selfsimilar,(13) or ‘fractal’. We shall henceforth refer to a
Lévy motion with spectral characteristic �L(ω) = b|ω|β as β-selfsimilar
with amplitude b. The exponent value β = 2 is unattainable by Poisson
superpositions. Rather, β = 2 corresponds to Brownian motion: �L(ω)=
ω2/2 if and only if L is a standard Brownian motion.

4. A special example of a selfsimilar motion is the Cauchy process
(β=1):

λ(x)= 1
π

1
|x|2 ,

�L(ω)=|ω|.

5. The Cauchy process can be modified by the incorporation of an
exponential cutoff, yielding (a >0):

λ(x)= exp{−a|x|}
|x|2 ,

�L(ω)=2|ω|arctan
( |ω|

a

)
−a ln

(
1+ ω2

a2

)
.

2.5. Conclusion

The Lévy–Khinchin theorem asserts that non-Brownian Lévy motions
are Poisson superpositions: pure-jump processes given by the continuum
superposition of Poisson processes. The common practice, when handling
Lévy motions, is to employ spectral analysis and characterize the motions
via their Fourier/Laplace representations. This approach is implicit, and
gives no insight on the motions’ underlying jump structure (in the non-
Brownian case).

This jump structure, however, is given explicitly by the Lévy–Khinchin
density. Indeed, the Lévy–Khinchin density specifies the ‘jump frequency’
of non-Brownian Lévy motions – the Poissonian rates according to which
the motions’ jumps occur.



Lévy, Ornstein–Uhlenbeck, and Subordination 175

The two representations – the spectral Fourier/Laplace transform on
the one hand, and the Lévy–Khinchin density on the other hand – equally
characterize Lévy motions and are equally ‘legitimate’. However, while the
first representation is the instinctively used one, it is implicit and does not
enable any intuitive way of ‘picturing’ the Lévy motion at hand. The sec-
ond representation, on the contrary, is a truly direct and physical one –
yielding the motions’ exact jump frequencies.

Imagine, for example, that the one-sided Lévy motion S is the cumu-
lative claim process of an insurance company. Namely, S(t) denotes the
aggregate of all claims declared during the time period [0, t ] (i.e., the
amount of money the insurance company had to pay off during this time
interval). The jumps of the motion S are, of course, the sizes of the
incoming individual claims. Now, think of the risk managers of the insur-
ance company: are they interested in the Laplace transform of S? or, are
they more interested in knowing the frequencies according which claims of
different sizes arrive?

The tangible information is given by the ‘jump frequency’ – the Lévy–
Khinchin density, and not by the spectral Fourier/Laplace characteristics.
Our automatic tendency to resort to spectral analysis is an acquired habit.
Albeit, a very justified one: time and again does the transformation from
‘physical domain’ to ‘spectral domain’ make systems and processes amena-
ble to mathematical analysis. However, in the case of non-Brownian Lévy
motions working within the ‘physical domain’ is possible: the use of the
Lévy–Khinchin density enables direct processing of information regarding
the motions’ underlying jump structure.

In the sequel we shall combine together both the spectral and jump
approaches in order to analyze two exemplary topics: (i) Lévy-driven
Ornstein–Uhlenbeck dynamics; and, (ii) temporal Lévy subordination.

3. ORNSTEIN–UHLENBECK DYNAMICS

Lévy motions serve as good approximations for stochastic process
arising in complex systems and exhibiting wild types of randomness –
rather than the ‘mild’ Gaussian type of randomness. Lévy motion models
have been extensively studied and successfully employed in various fields,
examples including: transport in fluid dynamics;(14) plasma physics;(15)

motion patterns of biological species;(16–18) and, stock-market dynam-
ics.(46)

Less explored – in the context of ‘Lévy randomness’ – has been
the problem of motion in the presence of an external field. The physical
cornerstone model of such motion is given by the Ornstein–Uhlenbeck



176 Eliazar and Klafter

dynamics – describing the motion of (diffusive) particles trapped in a
restoring field generated by a quadratic potential. See, for example, ref. 49
and references therein.

In this section we study the behavior and dynamics of Lévy motion
– rather than the regular, diffusive, Brownian motion – in the presence of
a quadratic potential well. Specifically, we consider the stochastic process
Y = (Y (t))t�0 generated by the following Lévy-driven Ornstein–Uhlenbeck
dynamics:

Ẏ (t)=−κY (t)+ Ẋ(t), (16)

where:

• κ >0 is the amplitude of the ‘retrieving force’ exerted by the qua-
dratic potential; and,

• Ẋ is a driving ‘Lévy noise’ – the derivative of a Lévy motion/One-
sided Lévy motion X= (X(t))t�0 with spectral characteristic �X(ω).

3.1. Spectral Analysis

Integration by parts of Eq. (16) yields

Y (t)= exp{−κt}Y (0)+
∫ t

0
exp{−κ(t− s)}X(ds). (17)

Let �Y(t)(ω) denote the log-Fourier/Laplace transform of Y (t), t �0. If the
initial condition Y (0) is independent of the Lévy driver X then transform-
ing Eq. (17) to Fourier/Laplace space and using Eqs. (3)–(4) yields

�Y(t)(ω)=�Y(0) (ω exp{−κt})+
∫ t

0
�X(ω exp{−κ(t− s)})ds.

Or, equivalently;

�Y(t)(ω)=�Y(0) (ω exp{−κt})+ 1
κ

∫ |ω|
|ω| exp{−κt}

�X(sign(ω)u)

u
du.

Finally, taking t→∞, we obtain that the process Y converges to a
stationary limit Y (∞)= limt→∞ Y (t) with log-Fourier/Laplace transform

�Y (ω)= 1
κ

∫ |ω|
0

�X(sign(ω)u)

u
du (18)
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(ω real in case X is a Lévy motion, and ω � 0 in case X is a one-sided
Lévy motion).

3.2. The Ornstein–Uhlenbeck Map

Based on the stochastic dynamics of Eq. (16) and on the spectral
analysis of subsection 3.1, we introduce the transformation

X
T−→Y, (19)

mapping the distribution of the ‘input’ Lévy driver X (namely, the law
of X(1)) to the stationary distribution of the ‘output’ Ornstein–Uhlenbeck
process Y (namely, the law of Y (∞)). We coin the transformation T the
Ornstein–Uhlenbeck map.

We henceforth assume that the Lévy driver X is either a symmetric
or a one-sided Poisson superposition, and (with no loss of generality) that
κ = 1. Thus, Eq. (18) implies that the spectral representation of the Orn-
stein–Uhlenbeck map T is

�Y (ω)= (T�X)(ω)=
∫ ω

0

�X(u)

u
du, (20)

where �X(ω) and �Y (ω) are, respectively, the log-Fourier/Laplace trans-
forms of X(1) and Y (∞), and where ω�0.

Now; if X is a Poisson superposition, what can we say about Y ? Is
it a Poisson superposition as well? And if it is – then what is its Lévy–
Khinchin density? These questions are left unanswered by Eq. (20) – which
provides us only with the implicit spectral representation of T. Rather, we
wish to understand the transformation of the jump structure caused by the
Ornstein–Uhlenbeck map T. The answer to these questions is given by the
following proposition;

Proposition 1. Assume that the input Lévy driver X is a symmet-
ric/one-sided Poisson superposition with Lévy–Khinchin density λX(x) and
Lévy–Khinchin tail �X(x) (x >0). Then, the stationary distribution of the
output Ornstein–Uhlenbeck process Y is a symmetric/one-sided Poisson
superposition, and its Lévy-Khinchin density and Lévy-Khinchin tail are
given, respectively, by (y >0):

λY (y)= (TλX)(y) := 1
y

∫ ∞
y

λX(x)dx, (21)
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and

�Y (y)= (T�X)(y) :=
∫ ∞

y

�X(x)

x
dx. (22)

In other words, the representation of the Ornstein–Uhlenbeck map T
in ‘jump space’ (rather than in Fourier/Laplace space) is given by either
of Eqs. (21) and (22): Eq. (21) representing the transformation of the
Lévy–Khinchin density; and, Eq. (22) representing the transformation of
the Lévy–Khinchin tail. The proof of proposition 1 is given in Appendix
A.

Three remarks and one corollary are in place:

(a) The connection between the input’s Lévy–Khinchin tail �X(x)

and the output’s Lévy–Khinchin density λY (y) is given by

λY (y)= 1
y

�X(y). (23)

(b) Observe the structural resemblance between the jump-tail repre-
sentation of Eq. (22) and the spectral representation of Eq. (20).

(c) Note that in all its three representations (Eqs. (20 )–(22)) the Orn-
stein–Uhlenbeck map turns out to be an integral operator – smoothening
out the input.

(d) Since the harmonic function 1/x is not integrable at the ori-
gin, Eq. (23) implies that – regardless of the input X – we always have
limy→0 �Y (y)=∞. This, in turn, yields the following corollary:

The output of the Ornstein–Uhlenbeck
map T is never Compound Poisson. (24)

The overall infinite Poissonian jump rate is, in a sense, the ‘price-payed’
for the smoothening effect of the Ornstein-Uhlenbeck map.

3.3. Examples

Let us give a few examples of the Ornstein–Uhlenbeck map T ‘in
action’;

The one-sided case (The Examples we refer to below are the one-sided
Poisson superposition examples of subsection 2.4)
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1. The Compound Poisson process with exponentially distributed
jumps (Example #1) maps to the Gamma process (Example #2) (a >0):

λX(x)=a exp{−ax}⇒λY (y)= exp{−ay}
y

.

2. The α-selfsimilar one-sided Lévy motions (Example #3) map to
themselves (0<α <1):

λX(x)= α

x1+α
⇒λY (y)= 1

y1+α
.

3. The one-sided Lévy motion of Example #5 maps to the one-sided
Lévy motion of Example #4 (selfsimilar modified by an exponential cut-
off) (a >0, 0<α <1):

λX(x)= exp{−ax}
xα

(
a+ α

xα

)
⇒λY (y)= exp{−ay}

y1+α
.

The symmetric case (The Examples we refer to below are the symmet-
ric Poisson superposition examples of subsection 2.4)

1. The Compound Poisson process with Laplace-distributed jumps
(Example #1) maps to the two-sided Gamma process (Example #2)
(a >0):

λX(x)=a exp{−a|x|}⇒λY (y)= exp{−a|y|}
|y| .

2. The β-selfsimilar one-sided Lévy motions (Example #3) map to
themselves (0<β <2):

λX(x)= β

|x|1+β
⇒λY (y)= 1

|y|1+β
.

3. The linear combination of the two-sided Gamma process (Exam-
ple #2) and the Cauchy process with exponential cutoff (Example #5)
maps to a Cauchy process with exponential cutoff:

λX(x)= exp{−a|x|}
|x|

(
a+ 1
|x|
)
⇒λY (y)= exp{−a|y|}

|y|2 .
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3.4. Inversion

A question naturally arising in the context of the Ornstein–Uhlenbeck
map is that of ‘reverse-engineering’: what input X would yield a desired
output Y ? In this subsection we explore the inverse transformation T−1 of
the Ornstein–Uhlenbeck map T:

X
T−1

←−Y,

Let us first analyze the image of the Ornstein–Uhlenbeck map T. From Eq.
(21) it is evident that the function λY (y) is always of the functional form g(y)/y

whereg(y) is a smooth and monotone decreasing function with limy→∞ g(y)=
0. Furthermore, the function g(y) must comply with the integrability condi-
tions of Eqs. (9) and (11). Namely, g(y) must satisfy

∫ ∞
0

min
{
y,

1
y

}
g(y)dy <∞

in the symmetric case, and

∫ ∞
0

min
{

1,
1
y

}
g(y)dy <∞

in the one sided case.
Having set an admissible function g(y) (satisfying the above mentioned

criteria) the ‘reverse-engineering recipe’ is given by the following simple rule:

λX(x)=−g′(x)⇒λY (y)= g(y)

y
. (25)

That is, the input Lévy–Khinchin density yielding an output with pre-spec-
ified Lévy-Khinchin density λY (y)= g(y)/y is λX(x)=−g′(x). Equation
(25) is obtained by differentiation of Eq. (21). We give three examples;

1. g(y)= exp{−yp}y−q :

λX(x)= exp{−xp}
x1+q

(
pxp+q

)⇒λY (y)= exp{−yp}
y1+q

,

where p>0 and: 0�q <1 in the one-sided case; 0�q <2 in the symmetric
case.
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2. g(y)= (c+y)−py−q :

λX(x)= (p+q)x+ cq

(c+x)1+px1+q
⇒λY (y)= 1

(c+y)py1+q
,

where c,p > 0 and: 0 � q < 1 in the one-sided case; 0 � q < 2 in the sym-
metric case.

3. g(y)=− 1
c

ln (1− exp{−cy}):

λX(x)= exp{−cx}
1− exp{−cx} ⇒λY (y)= 1

cy
ln
(

1
1− exp{−cy}

)
,

where c>0. (The function z=g(y) is obtained from the curve exp{−cy}+
exp{−cz}=1.)

We point out that in all the three examples no closed-form analytic
expression for the spectral characteristics of neither the input X nor the
output Y exist. Nevertheless, the jump densities are easily and explicitly
computable.

To conclude this subsection, we note that the inversions of the spec-
tral representation (20) and the inversion of the jump-tail representation
(22) are given, respectively, by

�X(ω)=ω� ′Y (ω),

and

�X(x)=−x�′Y (x).

3.5. Eigen-distributions

In subsection 3.3 we have seen that the Ornstein–Uhlenbeck trans-
formation T maps selfsimilar Poisson superpositions to themselves. In
other words, selfsimilar Poisson superpositions are eigen-distributions of
the Ornstein–Uhlenbeck map T. Are they the only eigen-distributions of
T? This is the issue of this subsection.

Consider the eigenvalue problem for the Ornstein–Uhlenbeck map T.
In the spectral representation it is given by

∫ ω

0

�(u)

u
du=η�(ω) (26)
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(ω�0), and in the jump-tail representation it is given by

∫ ∞
y

�(x)

x
dx=µ�(y) (27)

(y >0).
The solutions of the eigenvalue problems (26)–(27) are given, respec-

tively, by

�(ω)=�(1)ω1/η, (28)

and

�(x)=�(1)x−1/µ. (29)

Both Eqs. (28) and (29) imply that the eigen-distributions of the
Ornstein–Uhlenbeck map T are the selfsimilar Poisson superpositions. In
the symmetric case the range of the map’s eigenvalues is (1/2,∞), and in
the one-sided case the range is (1,∞). Note that the eigenvalues µ and
η turned out to be the Hurst exponents of the selfsimilar Lévy motions
and one-sided Lévy motions (namely; 1/β in the symmetric case, and 1/α

in the one-sided case). Furthermore, we have obtained the following Orn-
stein–Uhlenbeck characterization of selfsimilar Poisson superpositions:

Proposition 2. A one-sided/symmetric Poisson superposition is self-
similar if and only if its law is an eigen-distribution of the
Ornstein–Uhlenbeck map T.

4. TEMPORAL SUBORDINATION

Temporal Subordination arises naturally in systems whose subjective
‘operational time’ is different from the objective ‘physical time’.(53) That
is, systems which tick according to an internal – often stochastic and
irregular – ‘subjective clock’, rather than pace according to the universal
‘objective clock’ (whose time flow is deterministic and linear). Further-
more, Temporal Subordination is a most effective mean of introducing
anomalies into diffusive processes without distorting or changing their
underlying transport mechanisms. In particular, subordination elegantly
produces both subdiffusive and super-diffusive motions from regular diffu-
sive motions such as Random Walks and Brownian motion. See, for exam-
ple, refs. 54, 55.
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In this section we consider the Temporal Subordination of general
symmetric Lévy motions. Specifically, we assume fixed a symmetric Lévy
motion L= (L(t))t�0. Then, given a one-sided Lévy motion X= (X(t))t�0,
we introduce the process Y = (Y (t))t�0 generated by the following subor-
dination of the motion L by the motion X:

Y (t)=L(X(t)). (30)

4.1. The Subordination Map

The resulting Y process defined in Eq. (30) is a symmetric Lévy
motion. Hence L induces a transformation

X
S�−→Y, (31)

mapping one-sided Lévy motions to symmetric Lévy motions. We coin the
transformation S the Subordination map.

Let �L, �X, and �Y denote, respectively, the spectral characteristics
of L, X, and Y . Straightforward conditioning implies that:

�Y (ω)= (S�X) (ω)=�X (�L(ω)) . (32)

In other words, Eq. (32) gives the spectral representation of the subordi-
nation map S. Note that the stochastic sample-path composition of pro-
cesses Y =L◦X transforms – when passing to spectral representation – in
a ‘reverse order’ to the functional composition of their spectral character-
istics �Y =�X ◦�L.

Now; if X is a Poisson superposition, what can we say about Y ? Is
it a Poisson superposition as well? And if it is – then what is its Lévy–
Khinchin density? These questions are left unanswered by Eq. (32), which
provides us only with the implicit spectral representation of S. Rather – as
in Section 3 – we wish to understand the transformation of the jump struc-
ture caused by the subordination map S. The answer to these questions is
given by the following proposition;

Proposition 3. Let f (t; ·) denote the probability density function of
L(t), t �0. Assume that the input one-sided Lévy motion X is a one-sided
Poisson superposition with Lévy–Khinchin density λX(x) (x > 0). Then,
the output Lévy motion Y is a symmetric Poisson superposition, and its
Lévy–Khinchin density is given by (y >0):

λY (y)=
∫ ∞

0
f (x;y)λX(x)dx. (33)
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The proof of proposition 3 is given in Appendix A. The probability
density function f of the Lévy motion L serves as an integration kernel
in Eq. (33). Note that the integration on the right hand side of Eq. (33)
is along the temporal coordinate of f (and not along f ’s spatial coordi-
nate). The connection between the spectral characteristic �L of the motion
L and its probability density function f is given inverse Fourier transform
of Eq. (1):

f (x;y)= 1
2π

∫ ∞
−∞

exp{−iωy} exp{−�L(ω)x}dω (34)

Integrating both sides of Eq. (33), while taking into account that∫∞
0 f (x;y)dy = 1 (for all x), yields the equality �Y (0)=�X(0). That is,

the overall ‘jump rate’ of the input X and the output Y are equal. This,
in turn, yields the following corollary:

T he output of the Subordination map S is

Compound Poisson if and only the input is such.
(35)

Note that the corollary stated in Eq. (35) is the ‘subordination counter-
part’ of the corollary stated in Eq. (24) regarding the Ornstein–Uhlenbeck
map T.

4.2. The Brownian, Cauchy, and Selfsimilar Cases: Probabilistic

Representations

In two special cases – when L is a Brownian motion (�L(ω) =
ω2/2), and when L is a Cauchy motion (�L(ω)= |ω|) – the explicit form
of the density kernel f (x;y) is known. In the general selfsimilar case
(�L(ω)=|ω|β , β �=1,2) the explicit form of f (x;y) is unknown, but f (x;y)

nevertheless satisfies a scaling property. In all these three cases, as we shall
demonstrate in this subsection, Eq. (33) admits probabilistic representations.

Throughout this subsection we shall use the shorthand notation

gX(x)=xλX(x) and gY (y)=yλY (y). (36)

4.2.1. The Brownian Case

When L is a Brownian motion the density kernel f (x;y) is given by

f (x;y)= 1√
2πx

exp

{
− y2

2x

}
. (37)
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This kernel is intimately related to the probability density function of the
Lévy–Smirnoff distribution – the distribution of the first passage times of
Brownian motion. We explain;

Let τ(y) denote the first time a Brownian motion (starting from the
origin) hits the level y (y >0). Namely, τ(y) := inf{t �0|L(t)=y}. It is well
known (see, for example, ref. 26) that the probability density function of
τ(y) is given by (x >0):

fτ(y)(x)= y√
2π

exp

{
− y2

2x

}
1

x3/2
.

Now; substituting the kernel (37) into Eq. (33) and using the short-
hand notation of Eq. (36) yields

gY (y)=
∫ ∞

0
fτ(y)(x)gX(x)dx.

Hence, we have obtained a probabilistic representation of Eq. (33) based
on the first passage times of Brownian motion:

gY (y)=E[gX(τ(y))]. (38)

Furthermore, it is well known that the first passage times – when
viewed as a process (τ (y))y�0 in the parameter y – form a 1

2 -selfsimilar
one-sided Lévy motion with amplitude

√
2. This gives yet another meaning

to the representation (38). In particular, E [exp{−ωτ(y)}]= exp{−√2ω ·y}
(ω�0) and hence Eq. (38) implies the following equivalence: gX(x) is the
Laplace transform of the function φ(u) if and only if gY (y) is the Laplace
transform of the function φ(u2/2)u. Namely;

gX(x)=
∫ ∞

0
exp{−xu}φ(u)du ⇔ gY (y)=

∫ ∞
0

exp{−yu}
(

φ

(
u2

2

)
u

)
du.

4.2.2. The Cauchy Case

When L is the Cauchy motion the density kernel f (x;y) is given by

f (x;y)= x

π

1
x2+y2

. (39)
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Substituting the kernel (39) into Eq. (33) and using the shorthand nota-
tion of Eq. (36) yields

gY (y)=
∫ ∞

0
f (y;x)gX(x)dx. (40)

Note that the order of x and y in the integration kernel of Eq. (40) are
reversed: f (x;y) in Eq. (33) reverses to f (y;x) in Eq. (40).

Equation (40), in turn, gives us a probabilistic representation of Eq.
(33) based on the absolute values of the Cauchy motion L:

gY (y)= 1
2

E [gX (|L(y)|)] . (41)

4.2.3. The General Selfsimilar Case

When L is selfsimilar then the density kernel f (x;y) satisfies a scaling
property. Namely; L is β-selfsimilar if and only if

f (x;y)=f
(

1; y

x1/β

) 1
x1/β

. (42)

Substituting the kernel (42) into Eq. (33) and using the shorthand nota-
tion of Eq. (36) yields

gY (y)=
∫ ∞

0
f
(

1; y

x1/β

) y

x1/β

gX(x)

x
dx

which, in turn (using the change of variables z=y/x1/β ), gives

gY (y)=β

∫ ∞
0

f (1; z) gX

(
yβ

zβ

)
dz.

Hence, we obtain the probabilistic representation

gY (y)= β

2
E
[
gX

(
yβ

|L(1)|β
)]

. (43)
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4.2.4. Back to the Brownian and Cauchy cases

The probabilistic representation of Eq. (43) can be used, in particular,
in the Brownian (β=2) and Cauchy (β=1) cases4:

• The Brownian case: for β=2 Eq. (43) yields

gY (y)=E

[
gX

(
y2

Z2

)]
, (44)

where Z is a normalized Gaussian random variable (i.e., with zero mean
and unit variance). Equation (44), at first glance, does not seem to coin-
cide with the representation (38). However – since τ(y)

d=y2/Z2 – the rep-
resentations (38) and (44) are indeed identical.

• The Cauchy case: for β=1 Eq. (43) yields

gY (y)= 1
2

E
[
gX

(
y

|Z|
)]

, (45)

where Z is a normalized Cauchy random variable (i.e., with Fourier trans-
form exp{−|ω|}). Again, the representations (45) and (41) do not seem, at
first glance, to coincide. However, they do since L(y)

d= yZ and since Z
d=

1/Z (i.e., the normalized Cauchy random variable Z is equal, in law, to its
reciprocal 1/Z).

4.3. Examples

4.3.1. Brownian Subordinated by Selfsimilar

Let L be a Brownian motion, and take X to be an α-selfsimilar one-
sided Lévy motion (0<α <1) with amplitude 2α. Then �L(ω)=ω2/2 and
�X(ω)=2αωα, and hence Eq. (32) yields �Y (ω)=|ω|2α. That is, Y is 2α-
selfsimilar with unit amplitude.

This example shows us that when L is a Brownian motion then the
subordination map S establishes a one-to-one and onto correspondence
between selfsimilar one-sided Lévy motions and selfsimilar (non-Brown-
ian) symmetric Lévy motions. The range 0 < α < 1 (of the selfsimilarity
exponent of one-sided Lévy motions) is mapped to the range 0<β <2 (of

4Below d= stands for equality in distribution (law).
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the selfsimilarity exponent of symmetric motions) by the linear transfor-
mation β=2α.

Furthermore, using Eq. (44) we obtain a simple way of deriving a
closed-form analytic expression for the following (hard!) integral5:

I2α :=
∫ ∞

0

sin{u}
u2α

du=
√

π

4α

�(1−α)

�
(

1
2 +α

) (0<α <1). (46)

This integral appears in the coefficient of the Lévy–Khinchin density of
symmetric selfsimilar Lévy motions (see Eq. (15)). We shall use Eq. (46)
below in order to compute the fractional moments of symmetric selfsimi-
lar Lévy motions (see the proof of Eq. (47)). In particular, Eq. (46) implies
that

∫∞
0 (sin{u}/u)du=π/2 and

∫∞
0 (sin{u}/√u)du=√π/2. The derivation

of Eq. (46) is given in Appendix A.

4.3.2. Selfsimilar Subordinated by Selfsimilar

Let L be a β-selfsimilar (0<β <2) Lévy motion with unit amplitude,
and take X to be an α-selfsimilar (0<α <1) one-sided Lévy motion with
unit amplitude. Then �L(ω)= |ω|β and �X(ω)=ωα, and hence Eq. (32)
yields �Y (ω)=|ω|αβ .

This example shows us that when L is a β-selfsimilar Lévy motion
then the subordination map S establishes a one-to-one and onto corre-
Spondence between selfsimilar one-sided Lévy motions and the subrange
(0, αβ] of selfsimilar symmetric Lévy motions.

Furthermore, using Eq. (43) we obtain a simple way of deriving the
fractional moments of order 0 < p < β (higher-order moments diverge) of
the selfsimilar Lévy motion L:

E
[|L(t)|p]= 2p

√
π

�

(
1+p

2

)
� (1−p/β)

� (1−p/2)
· tp/β . (47)

The derivation of Eq. (47) is given in Appendix A.

4.3.3. Brownian Subordinated by Gamma

Let L be a Brownian motion, and take X to be a Gamma motion
with parameter a. Then �L(ω)=ω2/2 and �X(ω)= ln(1+ω/a), and hence
Eq. (32) yields �Y (ω)= ln(1+ω2/2a).

5See also ref. 56.
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For the Gamma motion gX(x)=exp{−ax} and hence Eq. (38) implies
that gY (y) = E [exp{−aτ(y)}]. However, E [exp{−aτ(y)}] is the Laplace
transform of τ(y) evaluated at the point a – which, in turn, is well known
to equal exp{−√2a · y} (see, for example, ref. 26). Hence we obtain that
gY (y)= exp{−√2a ·y} - which confirms with the two-sided Gamma exam-
ple of subsection 2.4.

4.3.4. A Brownian Example

Let L be a Brownian motion, and take X to be a one-sided Lévy
motion with Lévy–Khinchin density

λX(x)= cp

exp{−1/2x}
x1+p/2

,

where p>0 and cp=√π/
(

2p/2�
( 1+p

2

))
. A straightforward application of

formula (33), using the Gaussian kernel (37), gives

λY (y)=
(

1√
1+y2

)1+p

.

Note that in this example there are no closed-form analytic expressions for nei-
ther the spectral characteristic of X nor the spectral characteristic of Y . Yet,
computations involving the jump densities are simple and yield explicit results.

4.3.5. A Cauchy example

Let L be a Cauchy motion, and take X to be a one-sided Lévy
motion with Lévy–Khinchin density

λX(x)= 1
c2+x2

,

where c > 0. A straightforward application of formula (33), using the
Cauchy kernel (39), gives

λY (y)=2
ln(y)− ln(c)

y2− c2
.
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As in the previous example – there are no closed-form analytic expressions
for neither the spectral characteristic of X nor the spectral characteristic
of Y . Yet, again, computations involving the jump densities are simple and
yield explicit results.

5. CONCLUSIONS

Brownian motion and spectral analysis are employed ubiquitously in
science and engineering. Brownian motion is the predominant ‘model-of-
choice’ used to describe noise in continuous-time systems. Fourier and
Laplace transforms are the predominant ‘tool-of-choice’ in the analy-
sis of time series and temporal data. Be it a quantitative problem in
physics, chemistry, biology, or engineering – we instinctively use Brown-
ian motion to model noise, if present; and, we automatically apply
Fourier and Laplace analysis to unveil underlying spectral patterns, if
existing.

However, noise is often so much not Brownian, and randomness is
often so much not Gaussian.(57) When fluctuations are continuous and
mild, then indeed Brownian is the noise. However, when fluctuations are
discontinuous and wild, then the noise is not Brownian – rather, it is
Lévy. In recent years ‘Lévy randomness’ began to draw much atten-
tion. However, ‘Lévy randomness’ is much more complicated and intricate
than ‘Brownian randomness’, and is far less amenable to mathematical
analysis.

The mathematical toolkit at our disposal, when tackling randomness of
the Lévy type, is painfully small. It contains merely three instruments: spec-
tral analysis, fractional calculus, and the Lévy–Khinchin theorem. The second
instrument – fractional calculus – is in various perspectives equivalent to spec-
tral analysis, and is applicable only in cases where the Lévy randomness is
statistically selfsimilar. Thus, essentially we are left only with spectral analy-
sis and with the Lévy–Khinchin theorem. Effectively, however, scientists use
almost exclusively spectral analysis. And it should not be so!

Spectral analysis and the Lévy–Khinchin theorem both enable the
exact characterization of Lévy type randomness. The spectral charac-
teristic is an implicit one – it codes information in an intangible way.
Knowing the spectral characteristic of a Lévy motion renders no clue
regarding the motion’s underlying structure: its jumps. On the other hand,
Lévy–Khinchin theorem does precisely what spectral analysis does not: its
Lévy–Khinchin density fully specifies the underlying jump structure of Lévy
motions. Namely, it gives the entire ‘jump frequencies’ of a Lévy motion –
the exact Poissonian rates at which the motion’s jumps occur.
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Oddly, this most informative characteristic is seldom used by physicists.
Albeit, the Lévy–Khinchin density is a very physical, tangible, and illustrative
concept. We call out to physicists and scientists at large:

When working with Lévy type randomness, always combine
spectral analysis together with ‘jump analysis’ – it will pay out!

To support this motto, we demonstrate the combined use of spectral
analysis and ‘jump analysis’ in the exploration of two exemplary topics –
Ornstein–Uhlenbeck dynamics and Temporal Subordination. Both these top-
ics are cornerstones in physics: the former being a most fundamental
form of dynamics; the latter being the core mechanism of systems pac-
ing according to an internal and subjective ‘operational time’ which differs
from the external and objective ‘physical time’. In both these exemplary
topics, when the input is of a Lévy type then so is the output. Thus these
systems induce ‘mappings of randomness’ which transform input Lévy ran-
domness to output Lévy randomness. Studying these maps, incorporating
both spectral and jump analyses, we:

• obtain closed form formulae for the transformation of the spectral
characteristics and the Lévy–Khinchin densities under the Ornstein-Uhlen-
beck and Subordination maps;

• prove that the output of the Ornstein–Uhlenbeck map is never
Compound Poisson, whereas the output of the Subordination map is
Compound Poisson if and only if its input is so; and,

• give examples of systems where spectral analysis is not implement-
able (i.e., neither the characteristic input nor the characteristic output are
computable), whereas the ‘jump analysis’ easily yields explicit results.

Moreover, for Ornstein–Uhlenbeck systems:

• a closed form ‘reverse-engineering’ scheme is devised, telling us
what type of input Lévy randomness is required in order to yield a pre-
desired output Lévy randomness; and,

• the eigenvalue-problem of the Ornstein–Uhlenbeck map is analyzed,
and the map’s set of eigen-distributions is shown to coincide with the class of
statistically selfsimilar Lévy laws – yielding, in turn, a novel characterization
of these laws.

Most important, however, is the fact that the ‘jump analysis’ incorpo-
rated enables us to vividly picture the action of these maps. It enables us
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to see how the curve of the input jump frequencies transforms to the cor-
responding output frequency curve. We thus conclude with re-iterating the
above stated call out: jump analysis may let you vividly see what spectral
analysis may hide cloaked, use it – for it is indispensable a tool.

APPENDIX A.

A.1. Proposition 1

Proof. The jump-tail representation (22) follows straightforwardly
from the jump-density representation (21) by integration. As for the proof
of Eq. (21) – we split to the symmetric and one-sided cases:

The symmetric case
Using formulae (20), (13) and (8) we have

�Y (ω) =
∫ ω

0

�X(u)

u
du

=
∫ ω

0

(
2
∫ ∞

0
sin{yu}�X(y)dy

)
du

= 2
∫ ∞

0
(1− cos{ωy})

(
�X(y)

y
dy

)
,

and hence λY (y)=�X(y)/y – proving Eq. (21).
The one-sided case
Using formulae (20), (14) and (10) we have

�Y (ω) =
∫ ω

0

�X(u)

u
du

=
∫ ω

0

(∫ ∞
0

exp{−yu}�X(y)dy

)
du

=
∫ ∞

0
(1− exp{−ωy})

(
�X(y)

y
dy

)
,

and hence λY (y)=�X(y)/y – proving Eq. (21).

A.2. Proposition 3

Proof. (Throughout the proof we use the shorthand notation � =
�L)

By definition

�X(θ)=
∫ ∞

0
(1− exp{−θx})λX(x)dx, (48)
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and

�Y (ω)=
∫ ∞
−∞

(1− exp{iωy})λY (y)dy. (49)

Differentiating Eq. (48) gives

� ′X(θ)=
∫ ∞

0
exp{−θx}) [xλX(x)]dx. (50)

Differentiating Eq. (49), while using the functional composition
�Y =�X ◦� we obtain that

� ′X (�(ω))� ′(ω)=−i

∫ ∞
−∞

exp{iωy} [yλY (y)]dy,

which in turn (using Fourier inversion) implies that

λY (y)= i

2πy

∫ ∞
−∞

exp{−iωy}� ′X (�(ω))� ′(ω)dω. (51)

Now, substituting Eq. (50) into Eq. (51) and rearranging terms gives

λY (y)=
∫ ∞

0

{−1
2π

∫ ∞
−∞

exp{−iωy}
iy

exp{− (�(ω)x)} (� ′(ω)x
)
dω

}
λX(x)dx,

and, after integration by parts of the integrand, we arrive at

λY (y)=
∫ ∞

0

{
1

2π

∫ ∞
−∞

exp{−iωy} exp{−�(ω)x}dω

}
λX(x)dx. (52)

Finally, using the inverse Fourier transform (34), Eq. (52) yields

λY (y)=
∫ ∞

0
f (x;y)λX(x)dx.
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A.3. Equation (46)

Proof. Since X is α-selfsimilar with amplitude 2α, and since Y is 2α-
selfsimilar with unit amplitude we have (using the selfsimilar examples of
subsection 2.4):

gX(x) :=xλX(x)= 2αα

�(1−α)
· 1
xα

, (53)

and

gY (y) :=yλY (y)= α

I2α

· 1
y2α

, (54)

where I2α=
∫∞

0 sin{u}u−2αdu.
Substituting (53)–(54) into Eq. (44) gives

1
I2α

= 2α

�(1−α)
E
[
|Z|2α

]
,

where Z is normalized Gaussian. However, since Z is normalized Gauss-
ian we have E

[|Z|2α
]=2α�( 1

2 +α)/
√

π , and hence

I2α=
√

π

4α

� (1−α)

�
(

1
2 +α

) .

A.4. Equation (47)

Proof. Since X is α-selfsimilar and Y is αβ-selfsimilar – both with
unit amplitude – we have (using the selfsimilar examples of subsection
2.4):

gX(x) :=xλX(x)= α

�(1−α)
· 1
xα

, (55)

and

gY (y) :=yλY (y)= αβ

2Iαβ

· 1
yαβ

, (56)

where Iαβ =
∫∞

0 sin{u}u−αβdu.
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Substituting Eqs. (55)–(56) into Eq. (43) gives

1
Iαβ

= 1
�(1−α)

E
[|L(1)|αβ

]
.

Hence, setting p=αβ and using (46) we obtain that

E
[|L(1)|p]= 2p

√
π

�

(
1+p

2

)
� (1−p/β)

� (1−p/2)
. (57)

Finally, since L(t)
d= t1/βL(1), Eq. (57) yields

E
[|L(t)|p]= 2p

√
π

�

(
1+p

2

)
� (1−p/β)

� (1−p/2)
· tp/β .
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10. K. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge University

Press, 1999).
11. V. V. Uchaikin and V. M. Zolotarev, Chance and Stability, Stable Distributions and Their

Applications (V.S.P. Intl. Science, 1999).
12. O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnic, eds., Lévy Processes (Birkhauser,
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